10=-16t^2+32t+6

Simple and best practice solution for 10=-16t^2+32t+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=-16t^2+32t+6 equation:



10=-16t^2+32t+6
We move all terms to the left:
10-(-16t^2+32t+6)=0
We get rid of parentheses
16t^2-32t-6+10=0
We add all the numbers together, and all the variables
16t^2-32t+4=0
a = 16; b = -32; c = +4;
Δ = b2-4ac
Δ = -322-4·16·4
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{3}}{2*16}=\frac{32-16\sqrt{3}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{3}}{2*16}=\frac{32+16\sqrt{3}}{32} $

See similar equations:

| -1/3(x-2)^2+5=0 | | Y=6.9+7y= | | 12x^2-38x+25=0 | | À(x)=6x-x×x | | x²=13x+24 | | 2(2x+7)+4(3x+5=66 | | 4s+5=(1/2)s | | 3(2x+3)+3(3x-2)=0 | | (5x^2+6x-3)=0 | | 2500x=3000(x-5) | | 5x+1=2x-10 | | 2(x-5)=2x-3 | | 49-6x=3 | | v-7/8=-1/4 | | 2x^+7x=4 | | u/7=-11.2 | | 2x+37=5 | | 10x^2-13x-108=0 | | 3a-2a=6 | | 11.2x(3x+3)=3(2x+2) | | 2(3x+4)+4=6-2(x+3) | | 6(x−1)=3x−2 | | -34=2(v-2)-7v | | 4(n+2=5(n+1) | | 2x+3/4-5/2x=0 | | 4(n+2)=5(n+1£ | | 5x+8x=87 | | 9y-2=-5(y+6) | | 4c-2=-6 | | |4c-2|=-6 | | 3x|X|=45 | | |4c-2|=6 |

Equations solver categories